TI-Nspire Giveaway Puzzle Contest

John Chase,Math Teacher at Richard Montgomery High School (Rockville MD)

Statement of the Problem. One can create a triangle of consecutive positive integers as follows:

1					
2	3				
4	5	6			
7	8	9	10		
11	12	13	14	15	
16	17	18	19	20	21
\vdots					

Each row, R, has R numbers. Each column, C, has infinitely many numbers. Rows and columns begin at 1 . We define a function $F(R, C)$ for row R and column C such that $F(R, C)$ gives us a value in the triangle. Thus, $F(1,1)=1, F(2,1)=2$, and $F(2,2)=3$.

Part 1: Come up with a formula that computes $F(R, C)$ in terms of R and C for any positive values of R and C. Show your work.

Part 2: Come up with a formula or algorithm that, given a value n, determines R and C.

Solution. The R th row ends with the triangular number, $\frac{R^{2}+R}{2}$. If n is in row R, then the previous row is given by

$$
\begin{aligned}
\frac{(R-1)^{2}+(R-1)}{2} & =\frac{(R-1)^{2}+(R-1)}{2} \\
& =\frac{R^{2}-R}{2}
\end{aligned}
$$

Adding C to get n, we have

$$
\begin{equation*}
n=F(R, C)=\frac{R^{2}-R}{2}+C \tag{1}
\end{equation*}
$$

as desired.
Now, to find R and C given n, we first calculate the row. Solving $\frac{R^{2}+R}{2}$ for positive R gives

$$
R=\left\lceil\frac{-1+\sqrt{8 n+1}}{2}\right\rceil
$$

The expression inside the ceiling operator above will be an integer if and only if n is triangular. The floor of the expression would give the previous row. The ceiling will give the row n is in, so we have applied the ceiling function to ensure R is an integer. The column is then given by substituting this expression for R in (1) and solving for C :

$$
C=n-\frac{\left(\left\lceil\frac{-1+\sqrt{8 n+1}}{2}\right\rceil\right)^{2}-\left\lceil\frac{-1+\sqrt{8 n+1}}{2}\right\rceil}{2}
$$

